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Abstract

This article contains additional information to the Report KfK-4960 (Kernfor-
schungszentrum Karlsruhe,  today:  KIT),  published  by  V.  Corcalciuc  and  the  
author in 1991. Therein, the Quasi Free Break-up Model, introduced originally  
by Robert Serber, was used to calculate triple differential cross sections for par-
ticle-particle coincidences in nuclear break-up reactions. In that report, the ap-
proach of Serber's model had not been changed. Instead, the area of application  
had been extended by pure analytical calculations. To obtain triple differential  
cross sections, one calculation step was a coordinate transformation from the  
system on the circumference of the target nucleus to the laboratory system by  
evaluating the determinant of  a five-dimensional Jacobi matrix.  For the con-
nection of  the corresponding sets  of  variables,  five  equations  were provided.  
However, these equations did not explicitly connect the variables that were used  
in the matrix. Therefore, it could be difficult to follow the calculations. In the  
present article, the missing set of five equations is provided, which should im-
prove the understanding and facilitate the validation of the Jacobian. 

The so-called Serber model [1], developed by the nuclear physicist Robert Serber in 1947, 
describes the quasi free break-up of nuclei, when they pass or hit the target nucleus after being 
accelerated in a particle accelerator. For example, a deuteron-ion can break up into proton and 
neutron or a 6Li-ion can disintegrate into alpha particle and deuteron. The latter reaction was 
investigated in detail by the author and colleagues [2]. However, Serber calculated the (single) 
differential cross sections d/dE and d/d, with  being the cross section, and E and the 
energy and emission direction of the observed fragment. About 37 years later, H. Utsunomiya 
derived double differential cross sections d2/(ddE) on the same basis [3]. In 1991, together 
with V. Corcalciuc, we derived triple differential cross sections d3/(d1d2dE1) on the basis 
of Serber's model [4], describing coincidence experiments in which both fragments are de-
tected simultaneously. Here and in the following, the indices 1 and 2 correspond to the two 
fragments. Actually, this  triple differential cross section  depends on  five variables, which are
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1,  1,  2,  2,  and  E1.  The  angles   and  
specify the emission direction of a fragment, 
indicating that the whole reaction takes place 
not necessarily in plane but also out of plane. 
E1 is the kinetic energy of fragment 1.  

The model is also called the “Spectator Mod-
el,” which indicates that the projectile has no 
interaction with the target, except the momen-
tum transfer. In other words, the target nucleus 
remains in the ground state. The break-up of 
the  projectile  is  triggered  by constriction  of 
the projectile space by the target nucleus (Fig. 
1). The relative momentum between the two 
fragments, e.g., alpha particle and deuteron, is 
determined by the internal momentum distri-
bution between the alpha and deuteron cluster 
in the projectile. Fig. 2 illustrates the geomet-
ric situation of the momenta of the fragments 
after break-up. 

The quantities become clear in Fig. 2. Here, RT is the radius of the target nucleus, p1 the mo-
mentum component of fragment 1 perpendicular to the incoming beam, and  p the relative 
momentum of the clusters. Furthermore, pl1 is the momentum of fragment 1 in the laboratory 
system,  p01 the momentum of cluster 1 according to the projectile velocity, and l is the arc 
length along the surface of the target nucleus, defining the break-up location. 

After calculating the appropriate quantum mechanical wave function for the break-up reaction 
[4], which is not repeated here, a coordinate transformation was necessary from the momen-
tum components at the target circumference (Fig. 2a) to the quantities, measured in the labo-
ratory system. This means a transformation of the five “coordinates” px1, px2, pz, py, and l to 
the five coordinates 1, 1, 2, 2, and E1. Therefore, we have to calculate the following Jaco-
bian Jop for the “opaque” target nucleus [4]: 

Figure 2:  Momenta of the break-up fragments a) in the px-py plane and b) in the pz-p1 plane [4].  

Figure  1:  Local  coordinate  system  at  the  
target surface and the two projectile clusters 1  
and 2, projected into the x-y plane with a given 
separation r. The viewpoint of this figure is in  
the direction of the incoming projectiles (taken  
from [4]). 
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Jop =
∂( px1 , px2 , pz , p y , l)
∂(θ1 ,θ2 ,E1,φ1 ,φ2)

= ∣
∂ px1

∂θ1

∂ px2

∂ θ1

∂ pz

∂θ1

∂ p y

∂θ1

∂ l
∂θ1

∂ px1

∂θ2

∂ px2

∂ θ2

∂ pz

∂θ2

∂ p y

∂θ2

∂ l
∂θ2

∂ px1

∂ E1

∂ px2

∂ E1

∂ pz

∂E1

∂ p y

∂ E1

∂ l
∂ E1

∂ px1

∂ φ1

∂ px2

∂ φ1

∂ pz

∂ φ1

∂ p y

∂φ1

∂ l
∂φ1

∂ px1

∂ φ2

∂ px2

∂ φ2

∂ pz

∂ φ2

∂ p y

∂φ2

∂ l
∂φ2

∣           (1)

The five equations provided in Ref. [4], which connect the target and laboratory system, are:  

px1 = p1 cos ( l
RT

− φ1) (2)

px2 = p2 cos( l
RT

− φ2) (3)

py1 = p1 sin( l
RT

− φ1) (4)

py2 = −py1 (5)

pz1 = pl1 cos θ1−p01 (6)

However, they cannot be applied directly to calculate the Jacobian. Because we have five 
laboratory  coordinates,  we  need  five  independent  variables  that  describe  completely  the 
kinematic situation at the target nucleus during break-up of the projectile. The five variables, 
already mentioned, and the corresponding five equations, which were not explicitly given in 
[4] but were used to calculate the Jacobian Jop , are as follows: 

          px1 = ± √ p1
2

− py
2 (7)

          px2 = ± √ p2
2

− p y
2 (8)

          pz = pl1 cosθ1 − p01 (9)

 py =
± p1 p2 sin(φ1−φ2)

√ p1
2

+ p2
2

+ 2 p1 p2 cos (φ1− φ2)
(10)

  l = RT (φ1 + arcsin
py

p1
) +

0 for px1 ⩾ 0
πRT for px1 < 0

(11)
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Because  py2 = – py1, we write py ; and, pz1 is renamed as pz . With the equations

     p1 = p l1sinθ1 ,      pl1 = √2m1 E1 , (12a, b)

                 p2 = pl2 sinθ2 ,      pl2 = √2m2(E p− E1− Q) , (13a, b)

         and         p01 = (m1/mp) √2 mp( Ep− Q)  (14)

it is possible to calculate all of the derivatives in Eq. (1). Ep is the projectile energy, Q the Q-
value of the break-up reaction, and m1 , m2 , and mp are the masses of fragments 1, 2, and the 
projectile. Equations (7)–(9) and (11) can be easily deduced from Fig. 2. To get py in Eq. (10), 
Eq. (2) has to be solved for l/RT. Then, after replacing l/RT in Eq. (3) and considering Eq. (5), 
Eq. (3) can be solved for py.

1 

In Eqs. (7)–(11) the momentum component  py as well as  p1 and  p2 are intentionally not 
always resolved, because this simplifies the evaluation of the Jacobian. The double solutions 
(“±”) correspond to the “near side” and “far side” contributions, respectively (see Figs. 4 and 
6 in Ref. [4]). In Ref. [4], only the Jacobian for fragment 1 is determined. The solution for 
fragment 2 can be obtained by interchanging accordingly the parameters  of both fragments. 
Therefore, Eqs. (7)–(11) should be sufficient to follow the calculations in Appendix A of Ref. 
[4]. This article does not yield any new results, but we hope that it helps anyone who wants to 
reproduce or check the calculations in [4]. 

For those who are interested in calculating the Jacobian Jop by themselves (it's a good exer-
cise) before looking up the calculation method in [4], the final result should be: 

          Jop =
RT pl1 pl2

2 m1 sinθ1 sinθ2 cosθ2

√ p1
2

+ p2
2

+ 2 p1 p2 cos(φ1− φ2)
(15)

Eq. (1), in which the given Jacobian corresponds to the energy spectrum of fragment 1, has to 
be evaluated by using Eqs. (7)–(13b). Although this can be done in a straightforward manner 
by determining the partial derivatives and finally the determinant, the calculation is still not 
easy. 
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