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Abstract 

The analytical calculation of the area moments of inertia used for special mechanical tests in 

materials science and further generalizations for moments of different orders and broader 

symmetry properties has led to a new type of trigonometric power sums. The corresponding 

generalized equations are presented, proven, and their characteristics discussed. Although the 

power sums have a basic form, their results have quite different properties, dependent on the 

values of the free parameters used. From these equations, a large variety of power reduction 

formulas can be derived. This is shown by some examples.  

Keywords: Trigonometric power sum; power reduction formula; trigonometric identity; 

central binomial coefficient 

 

1.  Introduction 

The original motivation, which ultimately led to this paper, was not based on pure 

mathematics, but had a technical background within the field of materials research. In order to 

obtain physical quantities, such as the elastic modulus and strength of materials by means of 

mechanical bending tests, the second (area) moment of inertia is needed, which depends on the 

shape of the cross section of the bending bars. 

The used samples with special cross sections of fourfold rotational symmetry [1] allowed for 

the calculation by analytical integration. The next question was how the results would change 

if the cross section was rotated by an arbitrary angle, which led to the introduction of a phase 

shift in the arguments of the found trigonometric functions. Further expanding the range of 

validity of the equations for threefold and n-fold rotational symmetry and then to moments of 

higher order resulted in a step-by-step generalization of the formulas. Thus, the initial 

motivation was not the creation of generalized trigonometric power sums, but rather to learn 

more about certain physical moments. The new equations were found more or less accidentally. 

A detailed description of this development process is published as a technical report at the 

Hamburg University of Technology (TUHH) [2]. Since the power sums were not the initial aim 
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of the report, they were proven only for some special cases. In this paper, we present the 

generalized equations in a different, compact form and provide detailed proof.  

In the last decades, finite trigonometric power sums have become a subject of major interest. 

A brief overview is given, e.g., in a recent paper by da Fonseca et al. [3]. The main subject of 

their paper is new power sums concerning the sine and the cosine functions. Because we refer 

to these equations below, the main formulas in that paper are provided here.  

With  

𝑆′(𝑚, 𝑛)  ∶=  ∑ sin2𝑚
𝑛−1

𝑘=0

(
𝑘π

𝑛
)  

and 

𝐶′(𝑚, 𝑛)  ∶=  ∑  cos2𝑚
𝑛−1

𝑘=0

(
𝑘π

𝑛
) , 

da Fonseca et al. proved that 

𝑆′(𝑚, 𝑛)  =  

{
 
 

 
 
 21−2𝑚𝑛((

2𝑚 − 1
𝑚 − 1

)  + ∑ (−1)𝑘𝑛

⌊𝑚 𝑛⁄ ⌋

𝑘=1

(
2𝑚

𝑚 − 𝑘𝑛
))  ,     𝑚 ≥ 𝑛,

 21−2𝑚𝑛 (
2𝑚 − 1
𝑚 − 1

)  ,                                                             𝑚 < 𝑛,

           (1) 

and 

𝐶′(𝑚, 𝑛)  =  

{
 
 

 
 
 21−2𝑚𝑛((

2𝑚 − 1
𝑚 − 1

) + ∑ (
2𝑚

𝑚 − 𝑘𝑛
)

⌊𝑚 𝑛⁄ ⌋

𝑘=1

)  ,     𝑚 ≥ 𝑛,

 21−2𝑚𝑛 (
2𝑚 − 1
𝑚 − 1

)  ,                                                𝑚 < 𝑛,

                        (2) 

with m and n being positive integers. The authors also noted that the results of the second sum 

(Eq. (2)) were released in two former publications [4 (Eq. 18.1.5), 5 (No. 4.4.2.11)] using a 

similar representation. The apostrophes at S' and C' are added to distinguish these terms from 

the functions given in the main theorem below. As these sums comprise only half of the round 

angle, we have  

𝑆′(𝑚, 𝑛)  =  ∑ sin2𝑚
𝑛−1

𝑘=0

(
𝑘π

𝑛
)   =   ∑ sin2𝑚

2𝑛−1

𝑘=𝑛

(
𝑘π

𝑛
) .                              (3) 

Adding the two sums yields 

2 𝑆′(𝑚, 𝑛)  =  ∑ sin2𝑚
2𝑛−1

𝑘=0

(
𝑘π

𝑛
)  =  ∑ sin𝑝

𝑁

𝑘=1

(
2π𝑘

𝑁
) .                                (4) 

On the right, the exponent 2m is replaced by p and 2n by N. The shift of the summation 

bounds by 1 is allowed because the summands of k = 0 and k = N are identical (both are zero). 

The right side of Eq. (4) divided by 2 is equal to S'(m,n), if N and p are both even. We now 

generalize Eqs. (1) and (2) by also allowing p and N to be odd numbers. Furthermore, we add 
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a phase shift x to the argument of the trigonometric functions leading to the main theorem of 

this article. In fact, the full angle case together with an odd exponent p and even N yields zero 

if using Eq. (4). Nevertheless, this is no longer valid for odd N when including the phase shift.  

2.  Main result 

The following theorem shows the main result of this paper, where the integer N is replaced 

by n:  

Theorem 1. Let p and n be positive integers and x any real number in the following 

trigonometric power sums: 

𝑆(𝑝, 𝑛, 𝑥) ∶=  ∑ sin𝑝
𝑛

𝑘=1

(𝑥 +
2π𝑘

𝑛
)    

and       

𝐶(𝑝, 𝑛, 𝑥) ∶=  ∑cos𝑝
𝑛

𝑘=1

(𝑥 +
2π𝑘

𝑛
) ; 

we then have 

𝑆(𝑝, 𝑛, 𝑥)  =  

{
 
 

 
 
 
𝑛

 2𝑝
( 

𝑝
𝑝

2
 )  + 

𝑛

 2𝑝−1
∑ 𝑠

𝑝 2⁄ −1

𝑚=0

(−1)
𝑝
2
−𝑚 (

𝑝
𝑚
) cos((𝑝 − 2𝑚)𝑥) ,   𝑝 𝑒𝑣𝑒𝑛,

 
𝑛

 2𝑝−1
∑ 𝑠

(𝑝−1) 2⁄

𝑚=0

(−1)
𝑝−1
2
−𝑚 (

𝑝
𝑚
) sin((𝑝 − 2𝑚)𝑥) ,                     𝑝 𝑜𝑑𝑑,

       (5) 

and 

𝐶(𝑝, 𝑛, 𝑥)  =  

{
 
 

 
 
 
𝑛

 2𝑝
 (

𝑝

 
𝑝

2
 )  + 

𝑛

 2𝑝−1
∑ 𝑠

𝑝 2⁄ −1

𝑚=0

(
𝑝
𝑚
) cos((𝑝 − 2𝑚)𝑥) ,     𝑝 𝑒𝑣𝑒𝑛,

 
𝑛

 2𝑝−1
 ∑ 𝑠

(𝑝−1) 2⁄

𝑚=0

(
𝑝
𝑚
) cos((𝑝 − 2𝑚)𝑥) ,                         𝑝 𝑜𝑑𝑑,

                      (6) 

with         𝑠 =  𝛿(𝑝−2𝑚) mod 𝑛, 0 ,  

in which δ is the Kronecker delta, and mod denotes the modulo operation.  

Remark 1. In the special case of p even, n even, and x = 0, S(p,n,0) and C(p,n,0) are equivalent 

to S'(m,n) and C'(m,n) in Eqs. (1) and (2), respectively, as stated above. Furthermore, Eq. (5) 

for even p is equivalent to Eq. (C10) in [2], with only the factor s calculated differently.  

Proof.  With Euler's formula, implying sin x = (eix – e–ix)/(2i) and cos x = (eix + e–ix)/2, we find 

the following well-known identities [6]:  
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sin𝑝𝑥 =  

{
 
 

 
 
 
1

 2𝑝
 (

𝑝

 
𝑝

2
 )  + 

1

2𝑝−1
 ∑ (−1)

𝑝
2
−𝑚

𝑝 2⁄ −1

𝑚=0

(
𝑝
𝑚
) cos((𝑝 − 2𝑚)𝑥) ,     𝑝 even,

 
1

2𝑝−1
 ∑ (−1)

𝑝−1
2
 −𝑚

(𝑝−1) 2⁄

𝑚=0

(
𝑝
𝑚
) sin((𝑝 − 2𝑚)𝑥) ,                      𝑝 odd,

         (7) 

cos𝑝𝑥 =  

{
 
 

 
 
 
1

 2𝑝
 (

𝑝

 
𝑝

2
 )  + 

1

2𝑝−1
 ∑ (

𝑝
𝑚
) 

𝑝 2⁄ −1

𝑚=0

cos((𝑝 − 2𝑚)𝑥),      𝑝 even ,

 
1

2𝑝−1
 ∑ (

𝑝
𝑚
)

(𝑝−1) 2⁄

𝑚=0

cos((𝑝 − 2𝑚)𝑥) ,                           𝑝 odd.

                         (8) 

If we compare the right sides of Eqs. (5) and (6) with those of Eqs. (7) and (8), they appear 

very similar if the Kronecker delta s is ignored. For the derivation of Eqs. (5) and (6), we must 

distinguish two different cases concerning the fraction (p–2m)/n, which means that the fraction 

can be an integer or not. This will become clear below.  

Starting with Eq. (7) and p even, we replace x by x + 2πk/n and perform the summation 

k = 1, ..., n on both sides. By shifting the summation over k to the right, we obtain  

∑sin𝑝
𝑛

𝑘=1

(𝑥 +
2π𝑘

𝑛
)  

 =  ∑ [ 
1

 2𝑝
 (

𝑝

 
𝑝

2
 
)  + 

1

2𝑝−1
 ∑ ((−1)𝑝 2⁄ −𝑚 (

𝑝
𝑚
) cos ((𝑝 − 2𝑚) (𝑥 + 

2π𝑘

𝑛
)))

𝑝 2⁄ −1

𝑚=0

 ]     

𝑛

𝑘=1

 

 =  
𝑛

 2𝑝
 (

𝑝

 
𝑝

2
 )  +  

1

2𝑝−1
∑ ((−1)𝑝 2⁄ −𝑚 (

𝑝
𝑚
) ∑cos

𝑛

𝑘=1

((𝑝 − 2𝑚) (𝑥 + 
2π𝑘

𝑛
))) .       (9)

𝑝 2⁄ −1

𝑚=0

 

By applying an addition theorem, the last sum over k on the right side becomes  

∑cos

𝑛

𝑘=1

((𝑝 − 2𝑚)𝑥 + (𝑝 − 2𝑚)
2π𝑘

𝑛
) 

=  cos((𝑝 − 2𝑚)𝑥)∑cos

𝑛

𝑘=1

((𝑝 − 2𝑚)
2π𝑘

𝑛
) − sin((𝑝 − 2𝑚)𝑥)∑sin

𝑛

𝑘=1

((𝑝 − 2𝑚)
2π𝑘

𝑛
) . 

           (10) 

The arguments of the cosine and sine functions in the sums on the right side can be written 

as k θ, where 

𝜃 =  
𝑝 − 2𝑚

𝑛
 ⋅  2π .                                                        (11) 
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Thus, if (p–2m)/n is an integer, θ is an integral multiple of 2π, all of the cosine terms in the 

first sum on the right in Eq. (10) are 1, and the sum is n. In the second sum, all the sine terms 

vanish. It follows that on the right side of Eq. (9) the sum over k equals n · cos((p–2m)x). The 

number n can be shifted to the front of the sum over m and, thus, if we assume s = 1, the 

corresponding m-summands in Eqs. (9) and (5) for even p are identical. This is valid because 

the Kronecker delta s becomes 1 if (p–2m)/n is an integer.  

In the other case of (p–2m)/n not being integer, equivalent to s = 0, we use the following two 

trigonometric identities from J. L. Lagrange, valid for positive integer n and θ ≢ 0 mod 2π [7]:  

∑sin(𝑘𝜃 )

𝑛

𝑘=1

 =  
1

2
 cot

𝜃

 2
 − 

cos((𝑛 + 1 2⁄ )𝜃)

2 sin(𝜃 2⁄ )
                                 (12) 

and 

∑cos(𝑘𝜃 )

𝑛

𝑘=1

 =  − 
1

2
 + 

sin((𝑛 + 1 2⁄ )𝜃)

2 sin(𝜃 2⁄ )
 .                                  (13) 

In order to evaluate the first sum on the right side of Eq. (10), we expand the bracket (n+1/2) in 

Eq. (13), replace θ by means of Eq. (11), and find 

∑cos

𝑛

𝑘=1

((𝑝 − 2𝑚)
2π𝑘

𝑛
)  =  − 

1

2
 + 

sin(𝑛𝜃 + (1 2⁄ )𝜃)

2 sin(𝜃 2⁄ )
  

= − 
1

2
 + 

sin(𝑛(𝑝 − 2𝑚)2π 𝑛⁄  + (1 2⁄ )(𝑝 − 2𝑚)2π 𝑛⁄ )

2 sin((𝑝 − 2𝑚)π 𝑛⁄ )
 =  0 .                      (14) 

The first summand in the argument of the sine function in the large numerator can be omitted 

because the factor (p–2m) is always integer, implying that the whole sum becomes zero. For the 

second sum on the right of Eq. (10), we correspondingly obtain with Eq. (12)  

∑sin

𝑛

𝑘=1

((𝑝 − 2𝑚)
2π𝑘

𝑛
)  =  

1

2
 cot

𝜃

 2
 − 

cos(𝑛𝜃 + (1/2)𝜃)

2 sin(𝜃 2⁄ )
 

= 
1

2
 cot (

𝑝 − 2𝑚

2𝑛
 2π)  − 

cos(𝑛(𝑝 − 2𝑚)2π 𝑛⁄  + (1 2⁄ )(𝑝 − 2𝑚)2π 𝑛⁄ )

2 sin((𝑝 − 2𝑚)π 𝑛⁄ )
 =  0 .        (15) 

It follows that Eq. (10) and the sum over k on the right side of Eq. (9) yield zero, and, thus, the 

respective m-summands of Eqs. (9) and (5) (p even) both vanish. Because Eq. (5) now holds 

for s = 1 and s = 0, it is generally valid for even p with s being the given Kronecker delta.  

For even p, Eq. (6) can be proven analogously on the basis of Eq. (8). However, there is 

another simple argument for the correctness of Eq. (6) for even p, as follows: Since x can be 

any real angle, we apply sin(x+π/2) = cos x and, thus, by adding π/2 to x in Eq. (5), the left side 

changes as desired. The cosine on the right side of Eq. (5), after replacing x by x + π/2, can be 

modified in the following way:  
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cos((𝑝 − 2𝑚)(𝑥 + π 2⁄ ))  =  cos((𝑝 − 2𝑚)𝑥 + (𝑝 − 2𝑚)π 2⁄ ) 

=  cos((𝑝 − 2𝑚)𝑥) cos((𝑝 − 2𝑚)π 2⁄ ) − sin((𝑝 − 2𝑚)𝑥) sin((𝑝 − 2𝑚)π 2⁄ ) 

 =  cos((𝑝 − 2𝑚)𝑥) ⋅ (−1)𝑝 2⁄ −𝑚 .                                                                                        (16) 

Because p and p–2m are even, the last sine term vanishes and the second cosine term in the 

same line is 1 or –1 and can be replaced by (–1)p/2–m. When we further replace the cosine term 

in Eq. (5) by the result of Eq. (16), the product of the two identical factors (–1) p/2–m in Eq. (5) 

is 1 and we are left with Eq. (6) for even p. Accordingly, Eqs. (5) and (6) can be proven for odd 

p by starting again with Eqs. (7) and (8), respectively. This part does not contain any further 

difficulty and completes the proof.  

Remark 2. It should be mentioned that with the conventions 00
 = 1, (0

0
) = 1, and ∑ (. . . )−1

𝑚=0 = 0, 

Eqs. (5) and (6) are even valid for p = 0, and the result is S(0,n,x) = C(0,n,x) = n.  

Remark 3. The assumption that (p–2m)/n is an integer (s = 1) means that the angle θ in 

Lagrange's trigonometric identities would be an integral multiple of 2π, as mentioned 

previously (see Eq. (11)). It follows that, on the right side of Eqs. (12) and (15), we would 

obtain an expression –∞ + ∞, and in the second fraction on the right side of Eqs. (13) and (14), 

a term 0/0. Although both cases are, by definition, not allowed, they are removable 

discontinuities and can be eliminated by replacing θ by θ + ε in either case and evaluating the 

limit ε → 0. However, this procedure is not necessary because the case s = 1 has already been 

proven.  

 

 

3.  Discussion 

The equations are universal in their nature because they comprise the proof of other 

corresponding theorems previously published. It is interesting that although in Eqs. (5) and (6) 

we have a summation on the left side, which does not exist in Eqs. (7) and (8), in many cases, 

the results of Eqs. (5) and (6) are much simpler than those of Eqs. (7) and (8). This has to do 

with the Kronecker delta.  

We do not necessarily need to implement the value s. In [2], Eqs. (C5)–(C8) are equivalent 

to the given equations (5) and (6), but are presented in a different form. Rather than using s, the 

number m is replaced by a function of p, N, and a summation index j, and the summation bounds 

are given as functions of p and N. (In the report, we used the character N instead of n.) In this 

way, the summation comprises only the terms of s = 1. Either way, this representation yields the 

same results and appears more complicated than the formulas given here.  

For each combination of n and p, a power reduction formula can be deduced from the 

corresponding equation, in which only x is kept as a variable. In the case of higher values of n 

and p, for most summands, s is zero, implying that the number of terms on the right side of Eqs. 

(5) and (6) is usually less than the number of summands on the left side. Three examples are 

provided below.  
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For n = 1 and p = 3, we obtain the known equality [8]:  

sin3𝑥 =  
1

4
 (3 sin 𝑥 − sin(3𝑥)) .                                             (17) 

For the next example of n = 7 and p = 9, we find  

∑sin9
7

𝑘=1

(𝑥 +
2π𝑘

7
)  =  −

63

256
 sin(7𝑥) .                                      (18) 

A visualization of this example with an arbitrary angle of x = 20° is provided in Figure 1. If 

we replace the terms in this sum by means of Eq. (7), Eq. (18) becomes a double sum and has 

7 · 5 = 35 summands which are not zero, whereas the final result contains only one term. The 

third example of n = 16 and p = 6 with 64 corresponding summands does not depend on x and 

has the same result after replacing sine by cosine:  

∑sin6
16

𝑘=1

(𝑥 +
2π𝑘

16
)  =  5 .                                                   (19) 

 

 

Figure 1. Points on the unit circle with sevenfold rotational symmetry. The vertical (red) lines represent 

the sine values of the angles according to x = 20° (= 0.349...). The numbers indicate the k-index. 

 

In many cases, the results of Eqs. (5) and (6) are independent of x. For an overview, these 

results are plotted as an n-p matrix in Table 1, revealing a relatively complex pattern.  
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The pattern of the white fields with fixed numbers and the gray fields with variable results is 

determined by the properties of n and p, being odd or even and specifying the Kronecker delta 

s. In the white fields, all s values are zero, and in the var. positions, one or more are 1. For odd 

p and x = 0, all the results are zero only in the case of the sine function (Eq. (5)), whereas Eq. 

(6) yields nonzero numbers in the gray fields also for x = 0. The gray fields with n = 4, 8, 12, ..., 

even p, and p ≥ n are marked by an asterisk (*). Here, the results are identical for both equations 

(5) and (6) if the same phase shift x is used. The reason for this is that the angles can be split 

into groups of four angles, each creating a square on the circle in Figure 1. These angles are 

separated by 90° and because of sin(x + 90°) = cos x, the results are the same. 

Table 1. Results of Eqs. (5) and (6). The results in the white fields do not depend on x and on the equation used 

(sine or cosine). The results in the gray fields are variable (var.) and dependent on x. The asterisk (*) indicates 

results that depend on x but are the same for both Eqs. (5) and (6). Fixed positive numbers exist only to the right 

of the bold (red) polygon (p < 2n). For a clearer picture of the principles, the fractions are not reduced. (This table 

corresponds to Table 3 in [2].)  

 

In principle, the separation according to p even and p odd in Eqs. (5) and (6) can be avoided 

by introducing a second Kronecker delta q. This leads to:  
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𝑆(𝑝, 𝑛, 𝑥)  =  
𝑛

 2𝑝
(𝑞 (

𝑝
𝑝

2
) + 2 ∑ 𝑠

⌊(𝑝−1) 2⁄ ⌋

𝑚=0

(−1)⌊𝑝 2⁄ ⌋−𝑚 (
𝑝
𝑚
) sin ((𝑝 − 2𝑚)𝑥 +

𝑞π

2
))       (20) 

𝐶(𝑝, 𝑛, 𝑥)  =  
𝑛

 2𝑝
(𝑞 (

𝑝
𝑝

2
) + 2 ∑ 𝑠

⌊(𝑝−1) 2⁄ ⌋

𝑚=0

(
𝑝
𝑚
) cos((𝑝 − 2𝑚)𝑥))                                           (21) 

with          𝑞 =  𝛿𝑝 mod 2, 0     and     𝑠 =  𝛿(𝑝−2𝑚) mod 𝑛, 0 . 

Anyway, this form does not necessarily appear more convenient than Eqs. (5) and (6), and 

should only be seen as an alternative representation. An obvious simplification can be obtained 

for x = 0 (or more precisely x ≡ 0 mod 2π), which eliminates the trigonometric functions on the 

right sides of Eqs. (5) and (6) and reduces these formulas to:  

∑sin𝑝
𝑛

𝑘=1

(
2π𝑘

𝑛
)  =  { 

𝑛

 2𝑝
 (

𝑝
𝑝

2
) + 

𝑛

 2𝑝−1
∑ 𝑠 (−1)

𝑝
2
−𝑚  (

𝑝
𝑚
)

𝑝 2⁄ −1

𝑚=0

,     𝑝 even,

 0 ,                                                                             𝑝 odd,

             (22) 

and 

∑cos𝑝
𝑛

𝑘=1

 (
2π𝑘

𝑛
)  =  

{
 
 

 
 
 
𝑛

 2𝑝
 (

𝑝
𝑝

2
) + 

𝑛

 2𝑝−1
∑ 𝑠(

𝑝
𝑚
)

𝑝 2⁄ −1

𝑚=0

,        𝑝 even,

 
𝑛

 2𝑝−1
∑ 𝑠(

𝑝
𝑚
)

(𝑝−1) 2⁄

𝑚=0

,                             𝑝 odd,

                             (23) 

with s as given above.  

As a brief supplement, a special new equation is added. When trying to find a solution for 

the power sums, the following formula was found concerning the central binomial coefficient 

used in Eqs. (5) and (6). With the conventions ∏ (. . . )1
𝑘=2  = 1 and ∑ (. . . )1

𝑗=2  = 0, the equation is 

valid for any positive integer n. The proof is provided in [2, Appendix A], and we have 

(
2𝑛
𝑛
)  =  2 ∏(3 +∑  (∑𝑖

𝑗

𝑖=1

)

−1
𝑘−1

𝑗=2

) .                                      (24)

𝑛

𝑘=2

 

4.  Summary 

Two generalized trigonometric power sums (Eqs. (5) and (6)) are presented that can be 

illustrated by a circle with n points distributed regularly around the circumference. The key 

feature of the corresponding proof is the fact that two different cases concerning the fraction 

(p–2m)/n must be considered. If the parameter space is restricted to even n, even p, and x = 0, 

the equations are equivalent to the power sums recently published by da Fonseca et al. The new 

generalized formulas can be used, e.g., to check and derive similar equations. By inserting 
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natural numbers for n and p and leaving x variable, a wide class of power reduction formulas 

can be created. Although these power reduction formulas as well as the power sums S(p,n,x) 

and C(p,n,x) can contain a large number of terms, in most cases the result is relatively simple. 

It is also interesting that we do not find similar properties for all the parameter combinations. 

Instead, the results show a complex but well-ordered pattern (Table 1).  
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